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ABSTRACT  
Soil identification means determining the stratigraphy, the water table position, the stiffness 
and the damping profiles. In this work the Multichannel SASW method is proposed for 
evaluating the shear wave velocity profile and the stratigraphy. The identification problem is 
mathematically represented by a non-linear constrained optimization problem. In fact the 
system parameters are searched to minimize the distance between the experimental and the 
theoretical responses of the layered medium. The Davidon-Fletcher-Powell (DFP) algorithm 
is used for this task. The effectiveness of the procedure is shown with reference to a real 
case. 
 
1. INTRODUCTION  
In the treatment the following hypotheses will be assumed: (1) the system consists of a set of 
horizontally infinite layers overlaying an infinite half-space, (2) the medium is considered as 
an equivalent continuum, in which the layers are supposed linear elastic, homogeneous, 
monophase, isotropic, (3) each layer is characterized by the thickness h, the mass density ρ, 
the shear wave velocity VS and the Poisson ratio ν. The mass density ρ will be considered as 
a known parameter and the Poisson ratio ν reflects the existence and the position of the 
water table in the layered medium. 
 
2.1 Description of the Multichannel SASW Method 
The multichannel SASW method (Rix G. et al., 2001) is a non-invasive technique, that 
consists of perturbing the medium at a point on the free surface and measuring the travelling 
perturbation at several stations on the free surface. The main contribution to the surface 
motion is given by the Rayleigh waves, whose speed depends on the stiffness of the sampled 
portion of the system. In a layered medium Rayleigh waves are subjected to geometrical 
dispersion, i.e. waves of different wavelength travel at different phase and group velocities 
(Achenbach, J.D., 1999, Aki, K. and Richards, P.G., 1980 ) . As a consequence the apparent 
phase velocity of the propagating disturbance depends on the frequency, as it is actually 
measured in the field or as it is theoretically predicted (see fig. 1). The higher the frequency 
of excitation, the shorter the wavelength and the shorter the depth sampled by the Rayleigh 
waves. Conversely, the lower the frequency, the longer the wavelength and the deeper the 
layers investigated. 
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The Identification procedure is made of three steps: (1) the first step is the experiment in situ. 
By measuring the particle velocities or the particle accelerations the experimental system 
response is calculated in terms of Geometrical Dispersion Relation of Rayleigh waves, (2) 
the second step is the numerical simulation of the experimental test, so that a consistent 
theoretical dispersion relation is evaluated, (3) the third step consists of iteratively varying 
the mechanical and geometrical properties of the system, until an optimal match is obtained 
between the experimental and the theoretical system responses. This task can be 
accomplished by either a trial-and-error approach or an automated optimization procedure. 
We will focus on the optimization problem and the reader is referred to other works for the 
first two steps (Roma V., 2001, Roma V. et al., 2002). 
  
2.2. Optimization Algorithm 
Once both the experimental and the theoretical Dispersion Relations of Rayleigh waves have 
been determined, the nonlinear constrained optimization problem can be stated as follows: 
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in which N is the number of frequencies, M is the number of layers, Vexp(j) and Vtheo(j) are  
respectively the experimental and theoretical apparent phase velocities at the jth frequency, e 
is the least square error of the experimental and theoretical curve fitting, hi is the thickness of 
the ith layer. For a problem with M layers , (M+1) shear wave velocities exist, namely M 
shear velocities for the M layers plus one shear wave velocity for the half-space. 
The error in (1) is a strongly non-linear function of the geometrical and mechanical 
properties of the layered medium and represents the distance between the experimental and 
the theoretical apparent dispersion curves. The linear conditions (2)÷(4) indicate the 
constraints of the physical problem and they delineate a convex domain of feasibility for the 
parameters hi and Vsi. The condition (2) imposes a minimum thickness at each layer, since a 
thinner layer would not have a significant influence on the global experimental response. 
The condition (3) states that a maximum depth exists, down to which information can be 
obtained by the method. The condition (4) says that negative shear wave velocities do not 
have any physical sense. The non-linear constrained optimization problem (1)÷(4) is solved 
by means of a penalty method (Reklaitis et al., 1996). The mathematical problem is 
transformed into an infinite series of unconstrained optimization problems: 
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The R parameter is a penalty factor that combines the “ distance “ between the experimental 
and the theoretical responses with the constraints.  
The terms multiplied by the factor R inside the square bracket represent the penalties 
associated to the constraints of the initial optimization problem. 
The series of unconstrained, non-linear, optimization problems converges to the correct 
solution for R→∞. For each iteration with a fixed R the minimization of F is an 
unconstrained non-linear optimization problem. By varying the R parameter a different 
importance is given to the “distance“ respect to the constraints. The objective function 
F(hi ,vsi ,R) is minimized by using the Davidon–Fletcher-Powell (DFP) method (Reklaitis et 
al.,1996). This algorithm is a Quasi-Newton algorithm and as such it can be classified as a 
local-search technique. The optimization procedure has been implemented by the Author into 
a software Tremor and tested on both numerical examples and real sites (Roma V., 2001). 
The main results are summarized below: 
1) The contemporary identification of the thickness and the shear wave velocity 
profile may lead to unreliable results, because of the existence of local minima of the 
objective function in the domain of the feasible parameters. 
2) The identification of the shear wave velocities is successful if the thickness are 
kept as constant during the optimization procedure. 
3) The inversion of the stratigraphy gives excellent results if the shear wave 
velocities are fixed at constant values. 
4) The objective function is more sensitive to the variation of the shear wave 
velocities of the top layer and of the half-space. 
 
3. Application to a real site: Houston Levee Park, Memphis, Tennessee, USA 
 
As a real case the site Houston Levee Park in Germantown, Memphis, Tennessee, USA has 
been investigated with the proposed method. This site is located nearby the Wolf river and 
unfortunately there is no available information from alternative methods.  
The experimental test has been performed by using a vertical harmonic shaker, operating in 
the range of frequency of interest, that is between 5Hz and 100 Hz. In order to evaluate the 
experimental dispersion curve (see blue plusses in fig. 1) the vertical component has been 
considered and the procedure explained in (Roma et al., 2002) has been followed. The 
experimental phase velocity is quite smooth and its behavior resembles the typical tendency 
of normally dispersive sites in which the stiffness monotonically increases with depth.  
In the Identification process (Inversion of the parameters) the thicknesses have been chosen 
as fixed parameters as well as the mass density ρ=1800kg/m3 . The water table position is a 
variable which influences the value of the Poisson ratio ν (see fig. 3). Above the water table 
ν=0.2, instead below the water table ν=0.48, because of the almost incompressibility of the 
saturated medium. Also the shear wave velocities of each layer and the half-space have been 
adopted as unknowns. Two different shear wave velocity profiles have been assumed as 
possible starting configurations for the Inversion process. They are reported in table 1 as well 
as the correspondent inverted shear wave velocities at the end of the Identification procedure. 
The finally inverted shear wave velocity profiles are quite similar and from a geotechnical 
engineering viewpoint they represent the same optimal solution within a small range of 
uncertainty (see fig. 3). 
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    Case A Case B 
Layer h 

(m) 
ρρρρ 

(kg/m3) 
νννν Initial Vs 

(m/s) 
Final Vs 

(m/s) 
Initial Vs 

(m/s) 
Final Vs 

(m/s) 
1 2 1900 0.2 140 152 160 153 
2 2 1900 0.48 200 226 230 214 
3 2 1900 0.48 210 233 280 252 
4 2 1900 0.48 280 288 305 284 
5 3 1900 0.48 300 300 325 289 
6 3 1900 0.48 325 320 335 311 
7 3 1900 0.48 330 325 340 329 

Half-space ∞ 1900 0.48 365 353 345 357 
 
Table 1. Results of the Identification procedure for the real site Houston Levee Park in Germantown, 
Memphis, Tennessee, USA. The same shear wave velocity profile is obtained, starting from two 
different initial configurations Case A and Case B. 
 
From the values of the Objective Function and of the gradient of the Objective Function it 
can be realized that the final configuration founded by the algorithm is the optimal solution. 
After just 5 iterations the Objective Function in both the Cases A and B has lower down 
significantly (see fig. 2). 
 

 Case A Case B 
 Initial Final Initial Final 

Objective Function 4800 138 3115 102 
Absolute value of the 

Gradient of the Objective Function
182219 1.6 81807 30.8 

Number of iterations 25  17  
 

Table 2. Performance of the Identification Procedure. 
 
4. CONCLUSIONS  
 
Soil Identification can be automatically accomplished by means of the software Tremor 
made by the Author. The software is based on the Multichannel SASW procedure and the 
DFP Quasi-Newton optimization algorithm. The method, though some limitations, presents 
many advantages for engineering applications, especially when dealing with soil-structure 
dynamic interactions (Clough R.W. and Penzien J., 1993). As an example the ground profile at 
Houston Levee Park in Memphis (Tennessee, USA) has been successfully identified. 
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Figure 1. Geometrical Dispersion Relation of Rayleigh waves in Houston Leeve Park (Memphis, 

USA). Experimental curve (blue croxes), theoretical curve for the starting configuration 
(red stars) and theoretical curve (blue circles, Case A) at the end of the Inversion process. 
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Figure 2. Behavior of the Objective Function in the Cases A (circles) and B (stars)  for the 

Identification of the real site Houston Levee Park (Memphis, Tennessee, USA). 
 

 
Figure 3.  Soil Identification at Houston Levee Park (Memphis, Tennessee, USA). Comparison 

between the two independent results. 
 


